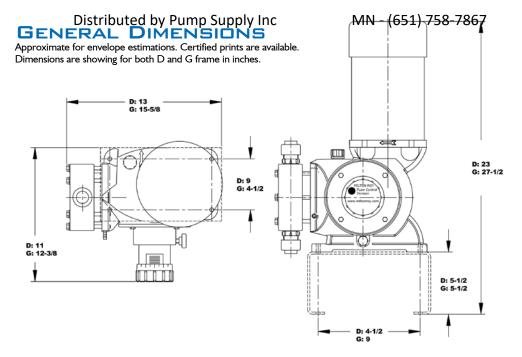


MACROY® SERIES

The MacRoy® Series of metering pumps offer traditional Milton Roy reliability with outstanding value for applications up to 175 psi (12 Bar).

Milton Roy has combined its heavy-duty industrial drive technology with state of the art design and manufacturing processes in creating the MacRoy® Series metering pump.
This family of Mechanically Actuated Diaphragm metering pumps is designed for durability and cost effectiveness.

trial
th state
d
esses
Roy®
np.
unically
ity
ss.



MACROY FEATURES AND SPECIFICATIONS

- Flow Rates up to 312 GPH (1180 Liters/hr)
- Mechanically Actuated Diaphragm liquid end eliminates flow restrictions
- Durable, metallic housing designed to withstand tough environments
- High efficiency motors minimize heat buildup
- A robust, metallic, worm gear drive coupled with the industrial duty variable eccentric stroke adjustment mechanism yields a 10 to 1 turn down ratio with smooth velocity profiles as compared to the pulsating flows of solenoid pumps or lost motion designs
- Smooth running, low friction bronze gears

- The PTFE, high performance, diaphragm design increases diaphragm life by eliminating the stresses inherent in most designs
- Reliable low flow performance is a result of high performance check valves with machined seats
- All gear components operate in an oil bath for long life
- Precision stroke adjustment can be operated while the pump is running or stopped
- Steady State Accuracy ± 1% of full capacity over the 10 to 1 turndown ratio
- Liquid Temperature Range 14° to 122° F (-14° to 50° C)
- ▶ Coating 2 part epoxy
- Average Weight with motor Frame D: 45 lbs (20 kgs)

MacRoy

NPT CONNECTION SIZES

FRAME	Liquid	CONNECTION PORT SIZE FOR THE FOLLOWING MATERIALS						
	END Size	BLACK PP, PVC, PVDF & ACRYLIC	АР	PLICATIC	HSO4	316 55		
D	2	I/4" Male		1/4" Male	/ A" NA - -	1/4" Male		
	4	1/111416		1/2" Male	1/1 Tiale	1/2" Male		
	7 & 8							
G	5	I	I/2" Female					
	6 & 7	I" Female		I" Male	I" Female	I" Male		

MATERIALS OF CONSTRUCTION

MATERIAL	FRAME	LIQUID END SIZE	HEAD	CHECK VALVE	SEALS	SEATS	BALLS	DIAPHRAGM
		2	Black PP	PVDF	Aflas	Alloy C22	- Ceramic	PTFE
Black	D	4			Allas	PTFE		
Polyproylene		7 & 8			Viton	PVC		
Polyproylene	G	5						
		6 & 7		PP				
	D	2		PVDF	Aflas	Alloy C22		
D) (C)		4				PTFE		
PVC	G	7 & 8 5	PVC		\ (r)	PVC		
		6 & 7		PVC	Viton			
		2	PVDF	PVDF	Aflas	Alloy C22		
	D	4				PTFE		
PVDF		7 & 8			PTFE			
	G	All				PVDF		
	D	2	Acrylic	PVDF	Aflas	Alloy C22		
		4				PTFE	_	
Acrylic		7 & 8			Viton	PVC		
	G	5		- D) / O				
D. A. H		6 & 7		PVC				
Polymer Applications	D&G D&G	All All		PVC	Viton	316 SS	316 SS	
Slurry Applications H2SO4 Applications	D&G	All	PVC	316 SS	Aflas	CA 20	CA 20	
1123OT Applications	D&G D	2	316 SS	316 SS	Alias	316 SS	CA 20	
		4			PTFE	PTFE	316 SS	
316 SS		7 & 8				316 SS		
]	G	5	3.000		Viton			
		6 & 7			PTFE	3,033		

MN - (651) 758-7867

PUMP SELECTION BY CAPACITY AND PRESSURE

PUMP SELECTION		MAXIMUM RATINGS							
MACROY		CAPACITY @ 60 Hz		CAPACITY @ 50 Hz					
FRAME	LIQUID	GEAR	(1725	RPM)	(1425 RPM)		PRESSURE		
FRAME	END	CODE	GPH	LITER/HR	GPH	LITER/HR	PSI	BAR	
	2	I	0.18	0.7	0.15	0.6	175	12	kW)
		2	0.35	1.3	0.29	1.1			
		6	0.48	1.8	0.40	1.5			
		3	0.7	2.6	0.58	2.2			
		I	3.0	11.4	2.5	9.5		10	
	4	2	6.6	25	5.5	21	150		(.25
	4	6	10	38	6.9	26	150		Ratings based on 1/4 HP (.25 kW)
		3	14.4	45	12	45			
D		I	13	99	10	39		7	
	7	2	25	95	21	79	100		
		6	34	129	28	106			
		3	50	189	42	159			
		I	31	117	26	98	75	5	
	8	2	57	216	47	178			
		6	87	329	72	273			
		3	127	481	106	401			
	5	I	26	98.4	22	82	150		Ratings based on 1 HP (.75 kW)
		2	53	200.6	44	167		10	
		6	75	283.9	62	237			
		3	106	401.2	88	334			
		8	_	_	110	416			
G	6	1	37	140.0	31	117	100	7	
		2	74	280. l	62	233			
		6	104	393.6	87	328			
		3	147	556.4	122	464			
		8	_	-	154	583			
	7	I	75	283.9	62	237	50	3.5	ating
		2	150	567.8	125	473			, ä
		6	213	806.2	177	672			
		3	300	1135.5	250	946			
		8	_	-	312	1181			

MacRoy G with PVC liquid end and manual micrometer stroke adjustment.

MACROY D & G PRODUCT CODE

Frame and Gear Motor &/ Liquid Connections Capacity Double Base Stroke Liquid End Ratio or Mount End Control Diaphragm Counting Material

Frame and Liquid End

D Frame D2 D4 D7 D8 G Frame

Gear Ratio Code

I = 43 SPM

G5

G6

G7

- 2 = 86 SPM
- 6 = 120 SPM
- 3 = 173 SPM
- 8 = 180 SPM @ 1450 RPM

Motor &/or Mount

- 8 = 1 ph 60 Hz 115/230 VAC 1725 RPM TE
- J = 3 ph 60 Hz 230/460 VAC 1725 RPM TE
- 9 = I ph 50 Hz 115/230 VAC 1450 RPM TE
- L = 3 ph 50 Hz 220/380 VAC 1450 RPM TE
- M = IEC 71, F130 V1 Flange Mount Less Motor
- N = IEC 80, F165 V1 Flange Mount Less Motor (G Frame only)
- X = Nema 56C Mount Less Motor

Liquid End Material

- 2 = PVDF
- 4 = Black Polypropylene (UV Stable)
- 7 = 316 ss
- 8 = PVC
- A = Acrylic
- P = Polymer Service
- L = Slurry Applications
- $N = H_2SO_4$ Applications

Connections

- P = NPT
- T = Tubing
- B = Bleed Valve NPT
- C = Bleed Valve Tubing

Capacity Control

- M4 = Manual
- EI = 4-20, Nema 4, 115V
- E2 = 4-20, Nema 4, 230V
- EA = 4-20, Ex Prf, 115V
- EB = 4-20, Ex Prf, 230V

Double Diaphragm

- N = None
- D = Double Diaphragm
- 3 = Double Diaphragm w/ Gauge
- 4 = Double Diaphragm w/Nema 4
 - Rupture Detection
- 7 = Double Diaphragm w/Nema 7
 - Rupture Detection

Base Code

- N = None
- I = Simplex Optional Base

Stroke Counting

- N = None
- I = Stroke Counting

(20 to 250 VAC/DC)

The photograph to the right is a D4 with a PVC liquid end, featuring NPT style check valves.

MACROY, DEPENDABLE AND VERSATILE

The MacRoy[™] series of pumps has proven its exceptional value over years of solid performance in a wide range of applications and industries. Water treatment chemicals, process additives, acids, out-gassing fluids, slurries, and many more applications are all handled with ease by this robust metering pump design. Your local representative can assist you in applying the MacRoy™ metering pump to your process.

ACCESSORIES

Safety Valves

Protect pump and piping from overpressure.

Minimize pressure and flow surges in the pump discharge. When applied to pump inlet, more favorable NPSH conditions result.

Back Pressure Valves

Provide smooth, artificial pressure in pump discharge line for atmospheric or low pressure systems to ensure pumping accuracy.

Calibration Columns

Allow periodic verification of pump performance during routine checks or after system maintenance.

